
Mapping Dependencies Trees: An Application
to Question Answering∗

Vasin Punyakanok Dan Roth Wen-tau Yih
Department of Computer Science

University of Illinois at Urbana-Champaign
{punyakan, danr, yih}@cs.uiuc.edu

Abstract

We describe an approach for answer selection in a free form question
answering task. In order to go beyond the key-word based matching in se-
lecting answers to questions, one would like to incorporate both syntactic
and semantic information in the question answering process. We achieve
this goal by representing both questions and candidate passages using de-
pendency trees, and incorporating semantic information such as named en-
tities in this representation. The sentence that best answers a question is
determined to be the one that minimizes the generalized edit distance be-
tween it and the question tree, computed via an approximate tree matching
algorithm. We evaluate the approach on question-answer pairs taken from
previous TREC Q/A competitions. Preliminary experiments show its poten-
tial by significantly outperforming common bag-of-word scoring methods.

1 Introduction

Open-domain natural language question answering (Q/A) is achallenging task in
natural language processing which has received significantattention in the last few
years [11, 12, 13]. In the Text REtrieval Conference (TREC) question answering
competition, for example, given a free form query like “What was the largest

∗This research is supported by NSF grants ITR-IIS-0085836, ITR-IIS-0085980 and IIS-
9984168 and an ONR MURI Award.

1



crowd to ever come see Michael Jordan?” [13], the system can access a large
collection of newspaper articles in order to find the exact answer, e.g. “62,046”,
along with a short sentence that supports it being the answer.

The overall tasks is very difficult even for fairly simple question of the type
exemplified above. A complete Q/A, requires the ability to 1)analyze questions
(question analysis) in order to determine what is the question about [7], 2) retrieve
potential candidate answers from the given collection of articles, and 3) determine
the final candidate that answers the question. This work concerns with the last
stage only. That is, we assume that a set of candidate answersis already given,
and we aim at choosing the correct candidate.

We view the problem as that of evaluating thedistance between a question and
each of their answer candidates. The candidate that has the lowest distance to the
question is selected as the final answer. The simple bag-of-word technique does
not perform well in this case as shown in the following example taken from [6].

What is the fastest car in the world?

The candidate answers are:

1. The Jaguar XJ220 is the dearest (415000 pounds),
fastest (217mph) and most sought after car in the world.

2. ...will stretch Volkswagen’s lead in the world’s
fastest growing vehicle market.

Without deep analysis of the sentences, one would not know that the “fastest” in
the second candidate does not modify car as does in the first, and the bag-of-word
approach would fail. Therefore, rather than defining distance measure on the raw
representation of the sentence, we first represent the question and the answer using
a dependency tree. Then we define a distance measure between dependencies
trees, taking into account their structure and some semantics properties we infer.
Figure 1 shows the dependency trees of the question and the candidate answers
in the previous example. This information allows us to better match the question
and its correct answer.

Tree matching has recently received attention in natural langauge processing
community in the context of machine translation [3, 5, 2], but so far not in the Q/A
task. We also presented here a different algorithmic approach from those used in
machine translation. Our approach uses the edit distance with the approximate
tree matching algorithm [14] to measure the distance between trees.

2



Figure 1: An example of dependency trees for a question and its candidate answer.
Note that due to the comprehensibility we omit some parts of the tree that are
irrelevant.

We test our approach on the questions given in the TREC-2002 Q/Atrack. The
comparison between the performance of our approach and a simple bag-of-word
approach clearly illustrates the advantage of using dependency trees in this task.

The next section describes our idea of using tree matching over the depen-
dency trees. Then, we explained the edit distance measure and the tree matching
method we use. After that we present our experimental results. The conclusion
and future direction are given in the final section.

2 Dependency Tree Matching in Question Answer-
ing

Our problem concerns with finding the best sentence that contains the answer to
any given question. In doing so, we need some mechanism that can measure how
close the a candidate answer is to the question. This allows us the choose the final

3



answer which is the one that matches the most closely to the question.
To achieve this, we look at the problem in two levels. First, we need a rep-

resentation of the sentences that allows us to capture useful information in order
to accommodate the matching process. Second, we need an efficient matching
process to work on the chosen representation.

At the first level, the representation should be able to capture both the syntactic
and semantic information of a sentence. To capture the syntactic information, we
represent questions and answers with their dependency trees which allows us to
see clearly the syntactic relations between words in the sentences. Using trees also
allows us to flexibly incorporate other information including semantic knowledge.
By allowing each node in the tree to contain more than just the surface form of its
corresponding word, we can add semantic information, e.g. what type of named
entities the word belongs, synonyms of the words, or other related words, to the
node. Moreover, each node may be generalized to contain a larger unit than a
word such as a phrase or a named entity.

With an appropriate representation, the only work left is tofind the matching
between nodes in the question and the answer in consideration. In doing so, we
use the approximate tree matching which we explain in the next section. Formally
speaking, we assume for each questionqi, a collection of candidate answers,Ai =
{a1, a2, . . . , ani

}, each of which is a sentence, is given. We output as the final
answer for theqi,

ai = arg min
a∈Ai

DR(qi, a),

whereDR returns the minimum approximate tree matching.

3 Edit Distance and Approximate Tree Matching

We use approximate tree matching [14] in order to decide how similar any given
pair of trees are. We first introduce the edit distance [10] which is the distance
measure used as the matching criteria. Then, we explain exactly how this measure
is used in the approximate tree matching problem.

We recapture here the standard definition that was introduced by [10] and [14].
We consider ordered labeled trees in which each node is labeled by some infor-
mation and the order from left to right of its children is important. Edit distance
measures the cost of doing a sequence of operations that transforms an ordered
labeled tree to another. The operations include deleting a node, inserting a node,
and changing a node. Figure 2 illustrate what effect these operations have. Specif-

4



ically, when a noden is deleted, its children will be attached to the parent ofn.
Insertion is the inverse of the deletion. Changing a node is toalter its label. Each
operation is associated with some cost. A cost of a sequence of operations is
the summation of the costs of each operation. We are interested in finding the
minimum cost sequence that edits a tree to another.

Figure 2: Effect of delete, insert, and change operations

Formally speaking, we represent an operation with a pair(a, b) wherea repre-
sents the node to be edited andb is its result. We use(a, Λ) and(Λ, b) to represent
delete and insert operation respectively. Each operation(a, b) 6= (Λ, Λ) is associ-
ated with a nonnegative costγ(a → b). The cost of a sequence of operationsS =
〈s1, s2, . . . , sk〉 is γ(S) =

∑k

i=1 γ(si). Given a treeT , we denotes(T ) as the tree
resulting from applying operations onT , andS(T ) = sk(sk−1(. . . (s1(T )) . . . )).
Given two treesT1 andT2, we would like to find

δ(T1, T2) = min{γ(S)|S(T1) = T2}

If the cost satisfies triangularity property, that isγ(a → c) 6 γ(a → b) +
γ(b → c)∀a, b, c, then [10] showed that the minimum costδ(T1, T2) is a minimum
cost of a mapping. A mappingM from T1 to T2 is a set of integer pairs satisfying
the following properties. LetT [i] representith node of the treeT in any given
order,N1 andN2 be the numbers of nodes inT1 andT2 respectively.

5



1. For any pair(i, j) ∈ M , 1 6 i 6 N1 and1 6 j 6 N2.

2. For any pairs(i1, j1) and(i2, j2) ∈ M ,

(a) i1 = i2 if and only if j1 = j2,

(b) T1[i1] is to the left ofT1[i2] if and only if T2[j1] is to the left ofT2[j2],

(c) T1[i1] is to an ancestor ofT1[i2] if and only if T2[j1] is an ancestor of
T2[j2].

The cost of a mappingM is

γ(M) =
∑

(i,j)∈M

γ(T1[i] → T2[j]) +
∑

(i,j)∈I

γ(T1[i] → Λ) +
∑

(i,j)∈J

γ(Λ → T2[j]),

whereI is the set of index of nodes inT1 that is not mapped byM andJ is that
of nodes inT2.

In general, we can use edit distance to decide how similar anygive pair of
trees are. However, in matching question and answer sentences in the question
answering domain, an exact answer to a question may reside only as a clause or
a phrase in a sentence, not the whole sentence itself. Therefore, matching the
question with the whole candidate sentence may result in poor match even though
the sentence contain the correct answer. Approximate tree matching allows us to
match question with only some parts of the sentence not a whole. Specifically,
there is no additional cost if some subtrees of the answer aredeleted.

Formally speaking, LetT1 andT2 be two trees to match. A forestS of a tree
T is a set of subtrees inT such that all subtrees inS are disjoint, andT\S is the
new tree resulting from cutting all subtrees inS from T . Let S(T ) represent the
set of all possible forests ofT . The approximate tree matching betweenT1 andT2

is to find:
DR(T1, T2) = min

S∈S(T2)
δ(T1, T2\S)

[14] gives an efficient dynamic programming based algorithmto compute the
approximate tree matching.

We note here that although the cost functions that we use in our experiments do
not satisfy the triangularity property, this does not affect the underlying theories of
the algorithm. The property is needed only in the proof of therelation between the
minimum distance edit operation sequence and the minimum cost mapping. Since
we are directly interested in finding the mapping not the operation sequence, the
algorithm correctly works for us.

6



4 Experiment

We experimented on 500 questions given in TREC-2002 Q/A competition. There
were 46 questions that had no correct answer. The correct answers for each ques-
tion, if any, were given along with the answers returned by all participants after
the completion of the competition. We, therefore, built ourcandidate pool for
each question from its correct answers and all answers returned by all participants
to the question. In some sense, this made the problem harder for our answer se-
lector. Normally, an answer selection process is evaluatedbased on the candidate
pool built from the correct answer and the output from an information retrieval
engine. However, our candidate pool contained those incorrect answers made by
other systems; hence, we need to be more precise.

Since sentence structure might be quite different from the question, we refor-
mulated the question in simple statement form using simple heuristics rules. In
this transformation, the question word (e.g.what, when, or where) was replaced
with a special token*ANS*. Below is an example of this transformation.

Where is Devil’s Tower?
Devil’s Tower is in *ANS*

Each sentence was preprocessed first by a SNoW-based part-of-speech tag-
ger [4]. Then, the automatic full parser [1] was run to produce the parse trees.
Since this parser also output the head word of each constituent, we could directly
convert the parse trees to their corresponding dependency tree by simply taking
the head word as the parent. Moreover, we extracted named-entity information
with the named-entity recognizer used in [9]. In addition, for each question, we
also ran a question classifier [7] which predicted the type ofthe answers expected
by the question.

After the answer was found, the document id that contained the answer was
returned. We counted as correct if the returned document id matched that of the
correct answer.

We defined three types of cost functions, namely, delete, insert and change, as
shown in Figure 3. The stop word list contained some of very common word that
would not be very meaningful, e.g. the article such as “a”, “an”, “the”. The word
lemma forms were extracted using WordNet [8].

We compared our approach with a simple bag-of-word strategy. In this simple
approach, we measured the similarity between a question anda candidate answer
with the number of common words, either in their surface forms or lemma forms,

7



1. delete:

if a is a stop word,γ(a → Λ) = 5,

elseγ(a → Λ) = 200.

2. insert:

if a is a stop word,γ(Λ → a) = 200,

elseγ(Λ → a) = 5.

3. change:

if a is *ANS*,

if b matches the expected answer type,γ(a → b) = 5,

elseγ(a → b) = 200,

else

if word a is identical to wordb, γ(a → b) = 0,

else ifa andb have the same lemma form,γ(a → b) = 1,

elseγ(a → b) = 200.

Figure 3: The definition of cost functions

between the question and the answer divided by the length of that answer. The
final answer was the one that produced the highest similarity.

Note that the evaluation method we used here is different from that in TREC-
2002 Q/A competition. In TREC, an answer produced by a system consists of the
answer key and the document that supports the answer. The answer is considered
correct only when both the answer key and the supporting document are correct.
Since our system does not provide the answer key, we relax theevaluation of
our system by finding only the correct supporting document. However, this does
not greatly simplify the task as the harder part of answer selection is to find the
correct supporting document. The answer key may be extracted later with some
heuristic rules. Also, in practice, a user who uses a Q/A system is very unlikely
to believe the system without a correct supporting document. Even though the
system does not provide a correct answer key, the user can easily find that given a
correct supporting document at hand.

The result is shown in Table 1. It shows the large improvementof using de-

8



pendency tree over the simple bag-of-word strategy.

Table 1: The comparison of the performance of the approximate tree matching
approach and the simple bag-of-word. The last column shows the percentage over
only the 454 questions that have an answer.

Correct
Method # % %(454)
Tree Matching 183 36.60 40.31
Bag-of-Word 131 26.20 28.85

5 Conclusion

We develop an approach to apply the approximate tree matching algorithm [14]
to the Q/A problem. This approach allows us to incorporate dependency trees, a
useful syntactic information, in the decision process. In addition, we incorporate
some semantic information such as named entity in our approach.

We evaluate our approach on the TREC-2002 questions, and the result clearly
illustrate the potential of our approach over the common bag-of-word strategy.

In the future we plan to investigate how to use more semantic information
such as synonyms and related words in our approach. Moreover, each node in
a tree represents only a word in a sentence, and we believe that by appropriately
combining nodes into a meaningful phrase may allow our approach perform better.
Finally, we plan to use some learning technique to learn the cost functions which
are manually defined now.

References

[1] M. Collins. Three generative, lexicalised models for statistical parsing. In Proceed-
ings of the 35th Annual Meeting of the Association of Computational Linguistics,
pages 16–23, Madrid, Spain, 1997.

[2] Y. Ding, D. Gildea, and M. Palmer. An algorithm for word-level alignment of par-
allel dependency trees. InThe 9th Machine Translation Summit of International
Association of Machine Translation, New Orleans, LA, 2003.

9



[3] J. Eisner. Learning non-isomorphic tree mappings for machine translation. In Pro-
ceedings of the 41st Annual Meeting of the Association for Computational Linguis-
tics (companion volume), Supporo, Japan, July 2003.

[4] Y. Even-Zohar and D. Roth. A sequential model for multi-class classification. In
Proceedings of 2001 Conference on Empirical methods in Natural Language Pro-
cessing, Pittsburgh, PA, 2001.

[5] D. Gildea. Loosely tree-based alignment for machine translation. InProceedings of
the 41st Annual Meeting of the Association of Computational Linguistics (ACL-03),
Supporo, Japan, 2003.

[6] S. Harabagiu and D. Moldovan. Open-domain textual question answering. In Tu-
turial of the Second Meeting of the North American Chapter of the Association for
Computational Linguistics, 2001.

[7] X. Li and D. Roth. Learning question classifiers. InCOLING 2002, The 19th
International Conference on Computational Linguistics, pages 556–562, 2002.

[8] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K.J. Miller. Wordnet:An on-line
lexical database.International Journal of Lexicography, 3(4):235–312, 1990.

[9] D. Roth, G. K. Kao, X. Li, R. Nagarajan, V. Punyakanok, N. Rizzolo, W-T. Yih,
C. Ovesdotter, and L. Moran. Learning components for a question-answering sys-
tem. InProceedings of The Tenth Text REtrieval Conference (TREC 2001), Gaithes-
burg, Maryland, 2001.

[10] K. Tai. The tree-to-tree correction problem.Journal of the Association for Comput-
ing Machinery, 26(3):422–433, July 1979.

[11] E. Voorhees. Overview of the trec-9 question answering track. In The Ninth Text
Retrieval Conference (TREC-9), pages 71–80. NIST SP 500-249, 2000.

[12] E. Voorhees. Overview of the trec 2001 question answering. InThe Tenth Text
Retrieval Conference (TREC 2001), pages 42–51. NIST SP 500-250, 2001.

[13] E. Voorhees. Overview of the trec 2002 question answering. InThe Eleventh Text
Retrieval Conference (TREC 2002). NIST SP 500-251, 2002.

[14] K. Zhang and D. Shasha. Simple fast algorithms for the editing distancebetween
trees and related problems.SIAM Journal on Computing, 18(6):1245–1262, Decem-
ber 1989.

10


